Generalized multiscale approximation of a multipoint flux mixed finite element method for Darcy–Forchheimer model

نویسندگان

چکیده

In this paper, we propose a multiscale method for the Darcy–Forchheimer model in highly heterogeneous porous media. The problem is solved framework of generalized finite element (GMsFEM) combined with multipoint flux mixed (MFMFE) method. We consider MFMFE that utilizes lowest order Brezzi–Douglas–Marini ( BDM 1 ) spaces approximation velocity and pressure. symmetric trapezoidal quadrature rule employed integral bilinear forms related to variables so local elimination allowed which leads cell-centered system construct space pressure solve on coarse grid following GMsFEM framework. offline stage, snapshot perform spectral decompositions get smaller dimension. online use Newton iterative algorithm nonlinear obtain solution, reduces number iterations greatly compared standard Picard algorithm. Based basis functions calculate each enrich iteratively. contain important global information are effective reduce relative errors substantially. Numerical examples provided highlight performance proposed

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiscale Mortar Multipoint Flux Mixed Finite Element Method

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces....

متن کامل

A Multipoint Flux Mixed Finite Element Method

We develop a mixed finite element method for single phase flow in porous media that reduces to cell-centered finite differences on quadrilateral and simplicial grids and performs well for discontinuous full tensor coefficients. Motivated by the multipoint flux approximation method where sub-edge fluxes are introduced, we consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element...

متن کامل

A Multipoint Flux Mixed Finite Element Method on Hexahedra

We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal., 44 (2006), pp. 2082–2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enh...

متن کامل

A Multiscale Mortar Mixed Finite Element Method

We develop multiscale mortar mixed finite element discretizations for second order elliptic equations. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. The polynomial degree of the mortar and subdomain approximation spaces may differ; in fact, the mortar sp...

متن کامل

A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra

In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields a positive definite cell-centered system for the pressure by eliminating local velocities. The method is shown to be accurate on highly distorted r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2021

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2021.113466